
This is the tale of two numbers, and how they found
their way over the Internet to the front pages of
the world’s newspapers on Thanksgiving Day,
embarrassing the world’s premier computer chip

manufacturer. The first number is the 12-digit integer

p =  824633702441

Thomas Nicely of Lynchburg College in Virginia is interested
in this number because both p and p+2 are prime. Two con-
secutive odd numbers that are both prime are called twin
primes. Nicely’s research involves the distribution of twin
primes and, in particular, the sum of their reciprocals,

S =  1/5 + 1/7 + ... + 1/29 + 1/31 + ... + 1/p + 1/(p+2) + . . .

It is known that this infinite sum has a finite value, but nobody
knows what that value is. For over a year, Nicely has been car-
rying out various computations involving twin, triple, and
quadruple primes. One of his objectives has been to demon-
strate that today’s PCs are just as effective as supercomputers
for this kind of research. He was using half a dozen different
computers in his work until March, when he added a machine
based on Intel Corporation’s Pentium chip to his collection.

In June, Nicely noticed inconsistencies among several dif-
ferent quantities he was computing. He traced them to the val-
ues he was getting for 1/p and 1/(p+2). Although he was using
double precision, those values were accurate only to roughly
single precision. He placed the blame at first on his own pro-
grams, then on the compiler and operating system, then on the
bus and motherboard in his machine. By late October though,
he was convinced that the difficulty was in the chip itself.

On October 30, in an email message to several other people
who had access to Pentium systems, Nicely said that he
thought there was a bug in the processor’s floating-point arith-
metic unit. One of the recipients of Nicely’s memo posted it on
the CompuServe network.  Alex Wolfe, a reporter for E E
T i m e s, spotted the posting and forwarded it to Terje Mathisen.

Terje Mathisen, a computer jock at Norsk Hydro in Oslo,
Norway, has published articles on programming the Pentium,
and has posted notes on the Internet about the accuracy of its

transcendental functions.  Within hours of receiving Wolfe’s
query, Mathisen confirmed Nicely’s example, wrote a short,
assembly-language test program, and on November 3, initiated
a chain of Internet postings in the newsgroup c o m p . s y s . i n t e l
about the FDIV bug. (FDIV is the floating-point divide instruc-
tion on the Pentium.) A day later, Andreas Kaiser of Germany
posted a list of two dozen numbers whose reciprocals are com-
puted to only single-precision accuracy on the Pentium.

On November 7, the EE Times published the first news arti-
cle on the bug. The headline on the front page story by Wolfe
was “Intel Fixes a Pentium FPU Glitch”.

Tim Coe is an engineer at Vitesse Semiconductor in
Southern California. He has designed floating-point arithmetic
units himself and saw in Kaiser’s list of erroneous reciprocals
clues to how the Pentium designers had tackled the same task.
He surmised, correctly it turns out, that the Pentium’s division
instruction employs a technique known to chip designers as a
radix-4 SRT algorithm. This produces two bits of quotient per
machine cycle and thereby makes the Pentium twice as fast at
division as previous Intel chips running at the same clock rate.

Coe created a model that explained all the errors Kaiser
had reported in reciprocals. He also realized that the relative
errors were potentially even larger for division operations
involving numerators other than 1. His model led him to a
pair of seven-digit integers whose ratio,

c =  4195835 / 3145727

appeared to be an instance of the worst-case error. Coe did his
analysis without actually using a Pentium—he doesn’t own
one. To verify his prediction, he had to bundle his year-and-
a-half-old daughter into his car, drive to a local computer
store, and borrow a demonstration machine.

The true value of Coe’s ratio is

c =  1.33382044 . . . .

But computed on a Pentium, it is

c =  1.33373906 . . . .

C l e v e ’ s  C o r n e r

With the Pentium, there is a very small chance of making a very large error

A Tale of Two Numbers

“In June, Nicely noticed
inconsistencies among
several different quantities
he was computing. They
were accurate to only
roughly single precision,
even though he was using
double precision.”

by Cleve Moler



The computed quotient is accurate to only 14 bits. The relative
error is 6.1.1 0- 5. This is worse than single-precision roundoff
error and more than ten orders of magnitude worse than what we
expect from double-precision computation. The error doesn’t
occur very often, but when it does, it can be very significant. We
are faced with a very small probability of making a very big error.

I first learned of the FDIV bug a few days before Coe’s rev-
elation, from an electronic mailing list maintained by David
Hough; at that point I began to follow comp.sys.intel. At first, I
was curious but not alarmed. It seemed to be some kind of
single- versus double-precision problem, which, although
annoying, is not all that uncommon. But Coe’s discovery,
together with a few customer calls to The MathWorks tech
support department, raised my level of interest considerably.

On November 15, I posted a summary of what I knew then to
both the Intel and the MA T L A B newsgroups, using Nicely’s prime
and Coe’s ratio as examples. I also pointed out that the divisors in
both cases are a little less than three times a power of two:

824633702441  =  3.238 - 18391

and

3145727  =  3.220 - 1

By this time, the Net had become hyperactive, and my posting
was redistributed widely. A week later, reporters for major
newspapers and news services had photocopies of faxed
copies of printouts of my posting.

The story began to get popular press coverage when Net
activists called their local newspapers and TV stations. I was
interviewed by CNN on Tuesday, November 22, and spent
most of the next day on the telephone with other reporters. My
picture ran in The New York Times and The San Jose Mercury
N e w s on Thursday, which happened to be Thanksgiving. The
T i m e s story included a sidebar, titled “Close, But Not Close
Enough,” which used Coe’s ratio to illustrate the problem.  The
story was also front-page news in the Boston Globe, with the
headline “Sorry, Wrong Number.” The G l o b e’s sidebar demon-
strated the error by evaluating Coe’s ratio in a spreadsheet.

In the month since I learned of Nicely’s prime and Coe’s
ratio they have certainly earned their place in the Great
Numbers Hall of Fame.

One challenging aspect of all this has been explaining to
the press just how big the error is. The focus of attention has
been on what we numerical analysts call the residual,

r =  4195835 - (4195835 / 3145727) (3145727)

With exact computation, r would be zero, but on the Pentium
it is 256. To most people, 256 seems like a pretty big error.

But when compared with the input data, of course, it doesn’t
seem so large. This gets us into relative error and significant
digits—terms that are not encountered in everyday journalis-
tic prose. There was even confusion on the part of some
reporters about where to start counting “decimal digits.” Not
everybody got the details right. The New York Times was the
only publication I saw that thought to show the actual value
of the erroneous quotient. The British publication, The
Economist, had the good sense to describe the error as 0.006%.
In retrospect, perhaps the best description of the error would
have been “about 61 parts per million.”

Since double-precision floating-point computation is vital
to MATLAB, and since Pentium-based machines account for a
significant portion of new MATLAB usage, we decided early
on to provide a release of our software that works around the
bug. My first thought was to modify our source code so that
every division operation

z = x/y

was followed by a residual calculation

r = x - y*z 

When the residual was too large, the division could be redone
in software using Newton’s method. We have now abandoned
both aspects of this approach—we don’t compute the resid-
ual, and we don’t do software emulation.

Coe, Mathisen, and I are now working with Peter Tang of
Argonne National Laboratory (on sabbatical in Hong Kong)
and a group of hardware and software engineers from Intel,
who are in California and Oregon. We have never met face-to-
face. Our collaboration is all by email and telephone (11 a.m. in
Massachusetts is 8 a.m. in California and Oregon, 5 p.m. in
Oslo, and 1 a.m. in Hong Kong). We are developing, imple-
menting, testing, and proving the correctness of software that
will work around the FDIV bug and related bugs in the
Pentium’s on-chip tangent, arctangent, and remainder instruc-
tions. We will offer the software to compiler vendors, commer-
cial software developers, and individuals via the Net. We hope
this software will be used by anyone who is doing floating-point
arithmetic on a Pentium and is unable to replace the chip.

The Pentium’s division woes can be traced to five missing
entries in a lookup table that is actually part of the chip’s cir-
cuitry. The radix-4 SRT algorithm is a variation of the familiar
long division technique we all learned in school. Each step of
the algorithm takes one machine cycle and appends another
two-bit digit to the quotient. Both the quotient and the remain-
der are represented in a redundant fashion as the difference
between two numbers. In this way, the next digit of the quotient
can be obtained by table lookup, with several high-order bits

“Since double- precision
floating- point computation
is vital to MATLAB, and since
Pentium-based machines
account for a significant
portion of new MATLAB
usage, we decided early on
to provide a release of our
software which works
around the bug.”



from both the divisor and the remainder used as indices into the
table. The table is not rectangular; a triangular portion of it is
eliminated by constraints on the possible indices.

When the algorithm was implemented in silicon, five
entries on the boundary of this triangular portion were
dropped. These missing entries (each of which should have a
value of +2) effectively mean that, for certain combinations of
bits developed during the division process, the chip makes an
error while updating the remainder.

The key to our workaround is the fact that the chip does a
perfectly good job with division almost all the time. It is sim-
ply a question of avoiding the operands that do not work very
well, which our software accomplishes with a quick test of the
divisor before each attempted FDIV. The absence of danger-
ous bit patterns is an indication that the FDIV can be done
safely. The presence of one of the patterns is not a guarantee
that the error will occur, just a signal that it might. In this
case, scaling both numerator and denominator by 15/16 takes
the divisor out of the unsafe region and ensures that the sub-
sequent division will be fully accurate.

With this approach, it is not necessary to test the magnitude
of the residual resulting from a division. It is known a priori
that all divisions will produce fully accurate results. If desired,
an additional test can compare the result of scaled and unscaled
divisions and count the number of errors that would occur on
an unmodified Pentium. We will offer this test in MATLAB, but
it can be turned off for maximum execution speed.

The regions to be avoided can be characterized by examining
the high-order bits of the fraction in the IEEE floating-point rep-
resentation. Floating-point numbers in any of the three available
precisions can be thought of as real numbers of the form

±(1+ f ).2e

where e is an integer in the range determined by under- and
overflow, and f is a rational number in the half-open interval
[0,1). The eight high-order bits of f divide this interval into
28 =  256 subintervals. Five of these subintervals contain all
the at-risk divisors. The hexadecimal representations of the

leading bits of the five subintervals are

1F, 4F, 7F, AF, and DF

(As I write this article, Coe, Tang, and some of the Intel peo-
ple are still working on a proof of correctness. The ultimate
version of the algorithm may well use a pattern with more
than eight bits, but the idea will be the same.)

A picture of the floating-point numbers between any two
powers-of-two looks something like this:

[ _ _ _ _ ( ) _ _ _ _ _ _ ( ) _ _ _ _ _ _ ( ) _ _ _ _ _ _ ( ) _ _ _ _ _ _ ( ) _ _ _ _ ]
1F      4F      7F      AF      DF    

The length of each of the five subintervals is 1/256 of the over-
all length. The result of any division involving a divisor out-
side these subintervals will be accurate. Only a small fraction
of divisions involving divisors inside the subintervals produce
erroneous results, but the easiest, and quickest, approach is to
avoid the subintervals altogether. Scaling the numerator and
denominator by 15/16 shifts them to a safe region. (I had
originally proposed scaling by 3/4, but this takes the 7F subin-
terval into the 1F subinterval.)

For example, the denominator in Coe’s ratio is

3145727  =  1.49999952316284.22 1

The hexadecimal representation is printed as
4 1 4 7 F F F F 8 0 0 0 0 0 0 0. So e =  21,  f =  2-1 - 2-21, and the number
is close to the right end point of the 7F subinterval. The 17
consecutive high-order 1 bits in f conspire with the bits in
Coe’s numerator to produce an instance of worst-case error.

The Pentium, like most other microprocessors, saves float-
ing-point numbers in memory in either a 32-bit single-precision
or a 64-bit double-precision format. In the floating-point arith-
metic unit itself, however, an 80-bit extended-precision format is
used for the calculations. Thus, if an at-risk denominator is
encountered in either single or double precision, it can be scaled
by 15/16 and extended precision can be used for the division.
Then, when the resulting quotient is rounded back to the work-
ing precision, it will yield exactly the same result, down to the
last bit, that would be produced by a chip without the bug.

The entire algorithm can be summarized in the few lines of
MATLAB code shown in the box. This is actually MATLAB
pseudocode, because MATLAB does not do bit-level operations
on floating-point numbers.  Moreover, we do not make the
distinction between the 64- and 80-bit representations that
ensure full accuracy when scaling is required.  But I hope this
explanation has given readers an idea of the thinking that went
into the workaround.   ■

Cleve Moler is chairman
and co-founder of
The MathWorks. His
email address is 
m o l e r @ m a t h w o r k s . c o m

Pentium-Safe Division
The algorithm is:

function z = (x,y)
if at_risk(y)

x = (15/16)*x;
y = (15/16)*y;

e n d
z = x/y;

The safety filter is:
function a = at_risk(y)
f = and(hex(y),'000FF00000000000');
a = any(f == ['1F'; '4F'; '7F'; 'AF'; 'DF'])


